7. 1 Integral es Net Change

Example: National Potato Consumption

The rate of potato consumption for a particular country was:

$$
C(t)=2.2+1.1^{t}
$$

where t is the number of years since 1970 and C is in millions of bushels per year.

The Russet Burbank

Find the amount of potatoes consumed from the beginning of 1972 to the end of 1973.

Example 5: National Potato Consumption

$$
C(t)=2.2+1.1^{t}
$$

To find the cumulative effect over time - Integrate it!

From the beginning of 1972 to the end of 1973:
$\int_{2}^{4} 2.2+1.1^{t} d t=2.2 t+\left.\frac{1}{\ln 1.1} 1.1^{t^{t}}\right|_{2} ^{4} \approx 7.066 \quad \begin{aligned} & \text { million } \\ & \text { bushels }\end{aligned}$

Net Change from Data: what if we don't have the a function to work with?

Example (p. 369): A pump	(min)	$(\mathrm{gal} / \mathrm{min})$
connected to a generator operates	5	58
at a varying rate, depending on	10	60
how much power is being drawn	15	65
from the generator. The rate	20	58
(gallons per minute) at which the	25	57
pump operates is recorded at 5-	30	55
minute intervals for an hour as	40	55
shown in the table. How many	45	59
gallons were pumped during the	50	60
hour?	55	63

Time (min)	Rate (gal/min)	Gallons pumped $=\int_{0}^{60} R(t) d t$
0	58	
5	60	We don't have a formula for $R(t)$, so we have to approximate the integral - the trapezoidal rule works well:
10	65	
15	64	
20	58	
25	57	$\frac{1}{2} \cdot 5 \cdot[58+2(60)+\cdots+2(63)+63]$
30	55	
35	55	
40	59	
45	60	-35825
50	60	gallons
55	63	
60	63	

2010 BC1

There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t)=7 t e^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. $(t=6)$. The rate $g(t)$, in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$
g(t)= \begin{cases}0 & \text { for } 0 \leq t<6 \\ 125 & \text { for } 6 \leq t<7 \\ 108 & \text { for } 7 \leq t \leq 9\end{cases}
$$

(a) How many cubic feet of snow have accumulated on the driveway by 6 A.M.?

$$
\int_{0}^{6} f(t) d t=142.224 \text { or } 142.275
$$

2010 BC1

There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t)=7 t e^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. $(t=6)$. The rate $g(t)$, in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$
g(t)= \begin{cases}0 & \text { for } 0 \leq t<6 \\ 125 & \text { for } 6 \leq t<7 \\ 108 & \text { for } 7 \leq t \leq 9\end{cases}
$$

(b) Find the rate of change of the volume of snow on the driveway at 8 A.M.

$$
\left.\begin{array}{l}
f(8)-g(8) \\
f(8)-108
\end{array}\right\}=-59.582 x-59.583
$$

2010 BC
There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t)=7 t e^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. $(t=6)$. The rate $g(t)$, in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$
g(t)= \begin{cases}0 & \text { for } 0 \leq t<6 \\ 125 & \text { for } 6 \leq t<7 \\ 108 & \text { for } 7 \leq t \leq 9\end{cases}
$$

(c) Let $h(t)$ represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time t hours after midnight. Express h as a piecewise-defined function with domain $0 \leq t \leq 9$.

$$
h(t)=\left\{\begin{array}{ll}
0 & 0 \leq t<6 \\
125(t-6) & 6 \leq t \leq 7 \\
125+108(t-7) & 7<t \leq 9
\end{array}| | \begin{array}{l}
h(t)=h(6)+\int_{6}^{t} 125 d x=\left.125 x\right|_{6} ^{t}=125(t-6) \\
h(t)=h(7)+\int_{7}^{t} 108 d x=125+108(t-7)
\end{array}\right.
$$

2010 BC

There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t)=7 t e^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. $(t=6)$. The rate $g(t)$, in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$
g(t)= \begin{cases}0 & \text { for } 0 \leq t<6 \\ 125 & \text { for } 6 \leq t<7 \\ 108 & \text { for } 7 \leq t \leq 9\end{cases}
$$

(d) How many cubic feet of snow are on the driveway at 9 A.M.?

$$
\begin{aligned}
& \int_{0}^{9} f(t)-g(t) d t \\
& \int_{0}^{9} f(t) d t-\int_{0}^{9} g(t) d t=\int_{0}^{9} f(t) d t-h(9)=21.334 \times x 26.335
\end{aligned}
$$

Classwork:

Chapter 7 AP Packet \#23-25

Homework:

Chapter 7 AP Packet \#27-29

